SOrT-ing VQA Models : Contrastive Gradient Learning for Improved Consistency
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» Current VQA models often struggle with consistency — they answer seemingly complex * We use Grad-CAM vectors to represent each question. o . Vodel Consistency
questions requiring higher-level reasoning correctly, but fail on associated lower-level . ,
perception questions. » This is a faithful function of the image, question, answer and the model’s weights.

» This indicates that the model likely answered the reasoning question correctly for the » Semantically, this represents the most salient visual concepts used to answer a s .
wrong reason(s). question. )
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We find that our approach improves the ranking of . Our approach improves model consistency by 6.5%
relevant sub-questions across a range of metrics. i (absolute) over Pythia and 3.2% (absolute) over SQuINT.
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An example of a commonly used VQA model, Pythia, exhibiting inconsistency — by answering a

The architecture of our model is based on Pythia. The Grad-CAM vectors for each question are computed at the
layer where the vision and language modalities are combined.

Our approach also demonstrates statistically
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significant gains on visual grounding. :

Pythia and SOrT via better sub-question ranking.

higher order reasoning question correctly, but failing on an associated perception sub-question. 1 L] R - S S BT e R e e e T T At
* We combine the VQA-Introspect and VQAV2 datasets to generate sets of sub-
CONTRIBUTIONS questions and irrelevant questions for a reasoning question.
We ask — can VQA models be made more consistent by learning to distinguish between » We contrast sub-questions with irrelevant questions for a reasoning question by using a
relevant and irrelevant perceptual concepts for a reasoning question? Contrastive Gradient Loss w.r.t their Grad-CAM vectors.
» We develop language-based interpretability metrics that measure the relevance of a lower- * In addition, we use a Cross Entropy Loss for the questions to retain accuracy.

level perception question while answering a higher-level reasoning question.

» We find that state-of-the-art VQA models often rank irrelevant questlons hlgher than . T Gcogtra:tive i A qualitative example of the improvement in visual grounding. SOrT’s is the only heatmap that points to the i
relevant ones. , ras thAs tasen ragient Loss | essential visual components needed to answer the question. :
S A in the daytime? I . -
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» To tix this, we introduce Sub-question Oriented Tuning (SOrT) to train VQA models to rank IR . Is the sky o ". CONCLUSION
sub-questions higher than irrelevant questions for a reasoning question. . bright? O 3
G L . Censes® Yeunss®
. . . . . . T Is the train / * We seek to improve consistency in VQA models
» This improves model consistency and visual grounding over baselines Pythia and SQuINT. == moving? X y '
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We present Sub-question Oriented Tuning (SOrT), a contrastive gradient learning
based approach for teaching VQA models to distinguish between relevant and
irrelevant perceptual concepts while answering a reasoning question.
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The reasoning question Was this taken in the daytime? has the sub-question Is the sky bright? and an irrelevant

question Is the train moving? We tune the model with a Cross-Entropy Loss and a Contrastive Gradient Loss to align i e Our approach improves ranking of sub—questions, mode] Consistency and visual
the reasoning question's Grad-CAM vector with its sub-question(s) and distance it from its irrelevant question(s). grounding
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