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PROBLEM1
• Current VQA models often struggle with consistency – they answer seemingly complex 

questions requiring higher-level reasoning correctly, but fail on associated lower-level 
perception questions. 

• This indicates that the model likely answered the reasoning question correctly for the 
wrong reason(s). 

CONTRIBUTIONS2

We ask – can VQA models be made more consistent by learning to distinguish between 
relevant and irrelevant perceptual concepts for a reasoning question?

• We develop language-based interpretability metrics that measure the relevance of a lower-
level perception question while answering a higher-level reasoning question.

• We find that state-of-the-art VQA models often rank irrelevant questions higher than 
relevant ones. 

• To fix this, we introduce Sub-question Oriented Tuning (SOrT) to train VQA models to rank 
sub-questions higher than irrelevant questions for a reasoning question.

• This improves model consistency and visual grounding over baselines Pythia and SQuINT.

The reasoning question Was this taken in the daytime? has the sub-question Is the sky bright? and an irrelevant 
question Is the train moving? We tune the model with a Cross-Entropy Loss and a Contrastive Gradient Loss to align 

the reasoning question's Grad-CAM vector with its sub-question(s) and distance it from its irrelevant question(s).

• We seek to improve consistency in VQA models.

• We present Sub-question Oriented Tuning (SOrT), a contrastive gradient learning 
based approach for teaching VQA models to distinguish between relevant and 
irrelevant perceptual concepts while answering a reasoning question.

• Our approach improves ranking of sub-questions, model consistency and visual 
grounding.

We find that our approach improves the ranking of 
relevant sub-questions across a range of metrics.

Our approach also demonstrates statistically 
significant gains on visual grounding.

A qualitative example of the improvement in visual grounding. SOrT’s is the only heatmap that points to the 
essential visual components needed to answer the question.  

• We use Grad-CAM vectors to represent each question.

• This is a faithful function of the image, question, answer and the model’s weights.

• Semantically, this represents the most salient visual concepts used to answer a 
question.

• We combine the VQA-Introspect and VQAv2 datasets to generate sets of sub-
questions and irrelevant questions for a reasoning question.

• We contrast sub-questions with irrelevant questions for a reasoning question by using a 
Contrastive Gradient Loss w.r.t their Grad-CAM vectors.

• In addition, we use a Cross Entropy Loss for the questions to retain accuracy.

Our approach improves model consistency by 6.5% 
(absolute) over Pythia and 3.2% (absolute) over SQuINT.

An example of improvement in consistency between 
Pythia and SOrT via better sub-question ranking.An example of a commonly used VQA model, Pythia, exhibiting inconsistency – by answering a 

higher order reasoning question correctly, but failing on an associated perception sub-question.

The architecture of our model is based on Pythia. The Grad-CAM vectors for each question are computed at the 
layer where the vision and language modalities are combined.


